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1 Convex Set

Before define what convex set is, let us consider what a line is. A line is determined by two distinct points,
namely

{y|y = θx1 + (1− θ)x2 = x2 + θ(x1 − x2)}

is a line. Obviously, if θ = 0, y = x2 and θ = 1, y = x1. Thus, this line is through the points x1 and x2

with respect to the direction x1 − x2.

Then the line segment could be denoted as

{y|y = θx1 + (1− θ)x2 = x2 + θ(x1 − x2), 0 ≤ θ ≤ 1}. (1)

Definition 1 A set C is convex if the line segment between any tow points in C lies in C. Mathematical
formulation: for any x1,x2 ∈ C, it has y = θx1 + (1− θ)x2 ∈ C.

Definition 2 Convex combination of {xi}mi=1 is y =
∑m

i=1 θixi and θi ≥ 0,
∑m

i=1 θi = 1.

Definition 3 Convex hull of set C is a set which contains all convex combination of points in C. Denoted
as Conv(C) = {y =

∑m
i=1 θixi, θi ≥ 0,

∑m
i=1 θi = 1,m ≥ 1}

Figure 1: Examples of Convex and Nonconvex Sets

Example 1 Give examples of convex set:

• See Figure 1.

• Hyperplane: C = {x|a>x = b}. Suppose that x0 is on the hyperplane and a is perpendicular to C,
then for any x ∈ C, it has 〈a,x− x0〉 = 0. Thus, a>x = a>x0. Denote a>x0 = b, so a hyperplane is
denoted as a>x = b.

• Halfspace: C = {x|a>x ≤ b}. See Figure 2.
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Figure 2: Hyperplane and Halfspace.

• Norm Ball: B(xc, r) = {x| ‖x− xc‖ ≤ r} = {x|x = xc + rv, ‖v‖ ≤ 1}.

• Ellipsoid: E(xc) = {x|(x − xc)
>A(x − xc) ≤ 1, A is a positive and definite matrix.} = {x|x = xc +

A−1/2v, ‖v‖ ≤ 1}.Q: How to define A−1/2.

• Cone: {(x, t)| ‖x‖ ≤ t}.

• Polyhedron: P = {x| a>i x ≤ bj , j = 1, . . . ,m, and c>j x = dj , j = 1, . . . , l} = {x| Ax ≤ b, Cx = d}.
Polyhedron is the intersection of a finite numbers of halfspace and hyperplane.

Figure 3: Separating Hyperplane Theorem

Theorem 1 (Separating Hyperplane Theorem) Suppose that there are two convex sets C and D satisfies
C ∩D = ∅. Then there exists a 6= 0 and b such that

a>x ≤ b for any x ∈ C, and a>x ≥ b for any x ∈ D. (2)

Proof 1 See Figure 3.
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Theorem 2 (Supporting Hyperplan Theory) Suppose that C is a convex set and x0 is a point on the boundary
of C. Then there exists a vector a such that

a>x ≤ a>x0 for any x ∈ C, (3)

where {x| a>x = a>x0} is called a supporting hyperplan of C at x0.

Operations preserve the convexity:

• If Ci, i = 1, . . . ,∞ are convex sets, then ∩iCi is convex. This results can be extended as ∩i∈ICi is
convex if the indicator set I is convex.

• If C is convex, the f(C) = {y|y = f(x) = Ax + b,x ∈ C} is convex.

1.0.1 Convex Function

Definition 4 We say a function f : Rn → R is convex if and only if dom(f) is convex and for any
x,y ∈ dom(f)

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y). (4)

Example 2 Let us give some examples of convex function:

• f(x) = a>x or f(x) = Ax. Is f(x) = Ax + b convex?

• f(x) = ‖x‖.

• f(x) = exp(ax) for a, x ∈ R.

• f(x) = x log(x), x > 0.

• f(A) = − log(det(A)) for any A ∈ Sn++.

At here, we briefly introduce a very important theorem about the smooth convex function. It helps us to
understand what is convex function in different expressions.

Theorem 3 Suppose f ∈ C1,1
L . Then the following are equivalent:

1. f is convex.

2. f(y) ≥ f(x) + 〈∇f(x),y − x〉

3. 〈∇f(y)−∇f(x),y − x〉 ≥ 0 (monotonicity)

4. Additionally, if f ∈ C2,1
L , then ∇2f � 0 everywhere (∇2f is positive semi-definite).

Proof 2 • (1)⇒ (2):
Write f(x + t(y − x)) two ways:

f(x + t(y − x)) = f(x) + t〈∇f(x),y − x〉+ o(t)

f(x + t(y − x)) = f(ty + (1− t)x) ≤ tf(y) + (1− t)f(x)

Therefore:

t〈∇f(x),y − x〉+ o(t) ≤ t(f(y)− f(x))

〈∇f(x),y − x〉+
o(t)

t
≤ f(y)− f(x)

Taking the limit as t→ 0,
〈∇f(x),y − x〉 ≤ f(y)− f(x).
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• (2)⇒ (3):
If we exchange the roles in the inequality in (2), we could get, for any x,y ∈ dom(f)

f(y) ≥ f(x) + 〈∇f(x),y − x〉
f(x) ≥ f(y) + 〈∇f(y),x− y〉

And if we sum those two inequalities we could obtain (3).

• (3)⇒ (2):
Define xt = x + t(y − x) and φ(t) = f(xt). Observe that

φ′(s) = 〈∇f(xs),y − x〉, φ(0) = f(x), φ(1) = f(y).

Suppose t > s. Then

φ′(t)− φ′(s) = 〈∇f(xt)−∇f(xs),y − x〉

=
1

t− s
〈∇f(xt)−∇f(xs),xt − xs〉 ≥ 0,

so φ′ is nondecreasing.

f(y) = φ(0) +

∫ 1

0

φ′(τ)dτ ≥ φ(0) + φ′(0)

⇒ f(y) ≥ f(x) + 〈∇f(x),y − x〉

• (2)⇒ (1):
Let’s define lx(y) := f(x) + t〈∇f(x),y − x〉, and from (2) we know that, for any y ∈ dom(f),

f(y) = max
x∈dom(f)

lx(y)

Notice that the reason why we could put = there is because, f(y) = ly(y). And for each x we know
that lx(y) is a affine function and the point-wise maximum of arbitrary convex function is still convex.
Then we know that f is convex.

And for smooth convex function we have a really nice to judge if a point is optimal.

Theorem 4 (Optimality Conditions) The following are equivalent for a convex C1 function:

1. x∗ is a global minimum.

2. x∗ is a local minimum.

3. x∗ is a stationary points (∇f(x∗) = 0).

Proof 3 • (1) ⇒ (2)
This direction is trivial. If x∗ is global minimum then it definitely is a local minimum.

• (2) ⇒ (3)
Assume that x∗ is the local minimum, then there exists a ball B(x∗, ε) = {bx| ‖x− x∗‖ ≤ ε} such that
f(x) ≥ f(x∗) for any x ∈ B(x∗, ε). Based on Taylor expansion, it has

f(x) = f(x∗) + 〈∇f(x∗),x− x∗〉+ o(‖x− x∗‖).

Let x− x∗ = −s∇f(x∗), and the s makes x ∈ B(x∗, ε). Thus, f(x) = f(x∗)− s‖∇f(x∗)‖2 + o(s). So,

0 ≤ f(x)− f(x∗)

s
= −s‖∇f(x∗)‖2 + o(s) ≤ 0. (5)

We obtain that ∇f(x∗) = 0.
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• (3) ⇒ (1)
Assume x∗ is a critical point, ∇f(x∗) = 0, and from convexity we have

f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉 = f(x∗)

for every x, then x∗ is a global minimizer.

Theorem 5 f(x) is a convex function if and only if for any x ∈ (f),d ∈ Rn, function φ : R→ R,

φ(t) := f(x + td), (φ) = {t| x + td ∈ dom(f)},

is convex.

Proof 4 See Theorem 2.8 on Page 48.

Definition 5 Denote that the epigraph of a function f as the set epi(f) = {(x, t)| f(x) ≤ t}.

Theorem 6 function f is convex if and only if epi(f) is a convex set.

Proposition 1 • If f1, f2, . . . , fm are convex, then g(x) = max(f1(x), . . . , fm(x)) is convex.

• f(x,y) is convex with respect to x, then g(x) = supy∈Yf(x,y) is convex.
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