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1 Convex Set

Before define what convex set is, let us consider what a line is. A line is determined by two distinct points,
namely

{yly =0x1+ (1 —0)xa2 = x2 + 0(x1 — x2)}

is a line. Obviously, if # = 0, y = x3 and § = 1, y = x;. Thus, this line is through the points x; and x5
with respect to the direction x; — X.

Then the line segment could be denoted as

{yly =0x1+ (1 — 0)x2 = x3 + 0(x1 — x2),0 < 0 < 1}. (1)

Definition 1 A set C is convez if the line segment between any tow points in C' lies in C. Mathematical
formulation: for any x1,x2 € C, it hasy = 0x1 + (1 —0)x, € C.

Definition 2 Convex combination of {x;}I"; isy = > v, 0ix; and 6; > 0,> " 0; = 1.

K2

Definition 3 Convex hull of set C' is a set which contains all convex combination of points in C. Denoted

as Conv(C) ={y =>i",0:;x;,0; > 0,5 1" 6; =1,m > 1}
(c)

Figure 1: Examples of Convex and Nonconvex Sets

(@ (b)

Example 1 Give examples of convez set:

e See Figure 1.

e Hyperplane: C = {x|a’x = b}. Suppose that xq is on the hyperplane and a is perpendicular to C,
then for any x € C, it has {(a,x —xo) = 0. Thus, a' x = a'x¢. Denote a'xg = b, so a hyperplane is
denoted as a' x = b.

e Halfspace: C = {x|a"x < b}. See Figure 2.



Figure 2: Hyperplane and Halfspace.

Norm Ball: B(x.,r) = {x] ||x — x.|| < r} = {x|x =%+ rv, ||v]| < 1}.

Ellipsoid: F(x.) = {x|(x —x.)TA(x — x.) < 1, A is a positive and definite matriz.} = {x|x = x. +
A2y ||v|| €1}.Q: How to define A=1/2.

Cone: {(x,t)] ||x|| < t}.

Polyhedron: P = {x| a/x < bj,j =1,...,m, and c;'—x =d;,j=1,...,1} = {x] Ax < b,Cx =d}.
Polyhedron is the intersection of a finite numbers of halfspace and hyperplane.

a'r <b

Figure 3: Separating Hyperplane Theorem

Theorem 1 (Separating Hyperplane Theorem) Suppose that there are two convex sets C' and D satisfies
CND=0. Then there exists a# 0 and b such that

a'x<b foranyxeC, anda'x >b for any x € D. (2)

Proof 1 See Figure 3.



Theorem 2 (Supporting Hyperplan Theory) Suppose that C' is a convez set and Xq is a point on the boundary
of C. Then there exists a vector a such that

a'x <a'xq for any x € C, (3)

where {x| a'x = a'xg} is called a supporting hyperplan of C at xo.
Operations preserve the convexity:

o If C;,i = 1,...,00 are convex sets, then N;C; is convex. This results can be extended as N;czC; is
convex if the indicator set Z is convex.

e If C is convex, the f(C) = {yly = f(x) = Ax+ b,x € C} is convex.

1.0.1 Convex Function

Definition 4 We say a function f : R™ — R is convex if and only if dom(f) is convex and for any
x,y € dom(f)
fOx+(1=0)y) <O0f(x)+(1—0)f(y). (4)

Example 2 Let us give some examples of convex function:

x or f(x) = Ax. Is f(x) = Ax + b convezx?

At here, we briefly introduce a very important theorem about the smooth convex function. It helps us to
understand what is convex function in different expressions.

Theorem 3 Suppose f € Ci’l. Then the following are equivalent:

1. f is convez.
2. fy) 2 f(x) +(Vf(x),y —x)
3. (Vf(y) = Vf(x),y —x) >0 (monotonicity)
4. Additionally, if f € Ci’l, then V2f = 0 everywhere (V2 f is positive semi-definite).
Proof 2 e (1)= (2):
Write f(x + t(y — x)) two ways:

e+ ty =x)) = f(x) + (V[ (x),y = x) +o(t)
fettly —=x)) = flty + (1 = t)x) <tf(y) + (1 = 1) (%)

Therefore:

Taking the limit as t — 0,



e (2)=(3):
If we exchange the roles in the inequality in (2), we could get, for any x,y € dom(f)

fy) = f(x) +(Vf(x),y —x)
fx) > fly) +(Vf(y),x—y)

And if we sum those two inequalities we could obtain (3).

e (3)=(2):
Define x; = x + t(y — x) and ¢(t) = f(x¢). Observe that

(bI(s) = <vf(xs)7y - X>7 (b(O) = f(X), ¢(1) = f(y)
Suppose t > s. Then
¢'(t) — ¢'(s) = (Vf(xe) = VF(xs),y —x)

— %Wf(m) — Vf(xs), %t — X4) >0,

so @' is nondecreasing.

£(y) = 6(0) + /0 ¢/ (r)dr > 6(0) + ¢'(0)
S f) 2 FO) (V)Y - x)

e (2)=(1):
Let’s define lx(y) := f(x) + t{V f(x),y — x), and from (2) we know that, for anyy € dom(f),

fly)= max I(y)
xedom(f)

Notice that the reason why we could put = there is because, f(y) = ly(y). And for each x we know
that Ix(y) is a affine function and the point-wise mazimum of arbitrary convex function is still convez.
Then we know that f is convexz.

And for smooth convex function we have a really nice to judge if a point is optimal.

Theorem 4 (Optimality Conditions) The following are equivalent for a convexr C function:

1. x* is a global minimum.
2. x* is a local minimum.
3. X* is a stationary points (Vf(x*)=0).

Proof 3 o (1)= (2)
This direction is trivial. If x* is global minimum then it definitely is a local minimum.

* (2)=(3)
Assume that x* is the local minimum, then there exists a ball B(x*,e) = {bx| ||x — x*|| < €} such that
f(x) > f(x*) for any x € B(x*,€). Based on Taylor expansion, it has

f(x) = f(x7) + (VF(x"),x = x7) + of|lx — x7).
Let x —x* = —sV f(x*), and the s makes x € B(x*,€). Thus, f(x) = f(x*) — s||[Vf(x*)||? +o(s). So,
fx) - fx)
s

0< — 5| V)P + ofs) <. (5)

We obtain that V f(x*) = 0.



* (3)= (1)

Assume x* is a critical point, V f(x*) = 0, and from convexity we have

f(@) = f() +(Vf("),z — %) = f(z7)

for every x, then x* is a global minimizer.

Theorem 5 f(x) is a convez function if and only if for any x € (f),d € R™, function ¢ : R — R,

¢(t) = f(x +1d), (¢) = {t| x +td € dom(f)},

18 convet.

Proof 4 See Theorem 2.8 on Page 48.

Definition 5 Denote that the epigraph of a function f as the set epi(f) = {(x,t)| f(x) < t}.
Theorem 6 function f is convex if and only if epi(f) is a conver set.

Proposition 1 o If f1, fay..., fm are convez, then g(x) = max(f1(x),..., fm(x)) is convez.

o f(x,y) is conver with respect to x, then g(x) = supyey f(x,y) is convez.
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