Optimization Theory and Algorithm	Lecture 8 - 05/21/2021
Lecture 8	
Lecturer:Xiangyu Chang	Scribe: Xiangyu Chang

Edited by: Xiangyu Chang

1 Convex Set

Before define what convex set is, let us consider what a line is. A line is determined by two distinct points, namely

$$\{\mathbf{y}|\mathbf{y} = \theta \mathbf{x}_1 + (1-\theta)\mathbf{x}_2 = \mathbf{x}_2 + \theta(\mathbf{x}_1 - \mathbf{x}_2)\}$$

is a line. Obviously, if $\theta = 0$, $\mathbf{y} = \mathbf{x}_2$ and $\theta = 1$, $\mathbf{y} = \mathbf{x}_1$. Thus, this line is through the points \mathbf{x}_1 and \mathbf{x}_2 with respect to the direction $\mathbf{x}_1 - \mathbf{x}_2$.

Then the *line segment* could be denoted as

$$\{\mathbf{y}|\mathbf{y}=\theta\mathbf{x}_1+(1-\theta)\mathbf{x}_2=\mathbf{x}_2+\theta(\mathbf{x}_1-\mathbf{x}_2), 0\le\theta\le1\}.$$
(1)

Definition 1 A set C is convex if the line segment between any tow points in C lies in C. Mathematical formulation: for any $\mathbf{x}_1, \mathbf{x}_2 \in C$, it has $\mathbf{y} = \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2 \in C$.

Definition 2 Convex combination of $\{\mathbf{x}_i\}_{i=1}^m$ is $\mathbf{y} = \sum_{i=1}^m \theta_i \mathbf{x}_i$ and $\theta_i \ge 0, \sum_{i=1}^m \theta_i = 1$.

Definition 3 Convex hull of set C is a set which contains all convex combination of points in C. Denoted as $Conv(C) = \{ \mathbf{y} = \sum_{i=1}^{m} \theta_i \mathbf{x}_i, \theta_i \ge 0, \sum_{i=1}^{m} \theta_i = 1, m \ge 1 \}$

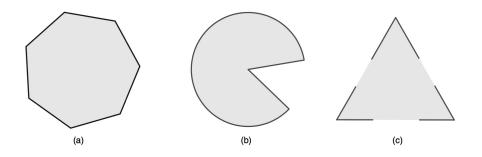


Figure 1: Examples of Convex and Nonconvex Sets

Example 1 Give examples of convex set:

- See Figure 1.
- Hyperplane: $C = {\mathbf{x} | \mathbf{a}^\top \mathbf{x} = \mathbf{b}}$. Suppose that \mathbf{x}_0 is on the hyperplane and \mathbf{a} is perpendicular to C, then for any $\mathbf{x} \in C$, it has $\langle a, \mathbf{x} \mathbf{x}_0 \rangle = 0$. Thus, $\mathbf{a}^\top \mathbf{x} = \mathbf{a}^\top \mathbf{x}_0$. Denote $\mathbf{a}^\top \mathbf{x}_0 = \mathbf{b}$, so a hyperplane is denoted as $\mathbf{a}^\top \mathbf{x} = \mathbf{b}$.
- Halfspace: $C = {\mathbf{x} | \mathbf{a}^\top \mathbf{x} \leq \mathbf{b}}$. See Figure 2.

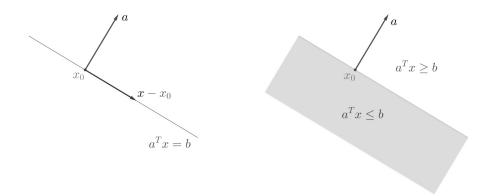


Figure 2: Hyperplane and Halfspace.

- Norm Ball: $B(\mathbf{x}_c, r) = \{\mathbf{x} | \|\mathbf{x} \mathbf{x}_c\| \le r\} = \{\mathbf{x} | \mathbf{x} = \mathbf{x}_c + r\mathbf{v}, \|\mathbf{v}\| \le 1\}.$
- Ellipsoid: $E(\mathbf{x}_c) = \{\mathbf{x} | (\mathbf{x} \mathbf{x}_c)^\top A(\mathbf{x} \mathbf{x}_c) \le 1, A \text{ is a positive and definite matrix.}\} = \{\mathbf{x} | \mathbf{x} = \mathbf{x}_c + A^{-1/2} \mathbf{v}, \|\mathbf{v}\| \le 1\}.$ Q: How to define $A^{-1/2}$.
- Cone: $\{(\mathbf{x}, t) | \|\mathbf{x}\| \le t\}$.
- Polyhedron: $\mathcal{P} = \{\mathbf{x} | \mathbf{a}_i^\top \mathbf{x} \leq b_j, j = 1, ..., m, and \mathbf{c}_j^\top \mathbf{x} = d_j, j = 1, ..., l\} = \{\mathbf{x} | A\mathbf{x} \leq \mathbf{b}, C\mathbf{x} = \mathbf{d}\}.$ Polyhedron is the intersection of a finite numbers of halfspace and hyperplane.

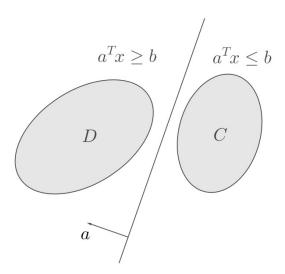


Figure 3: Separating Hyperplane Theorem

Theorem 1 (Separating Hyperplane Theorem) Suppose that there are two convex sets C and D satisfies $C \cap D = \emptyset$. Then there exists $\mathbf{a} \neq 0$ and \mathbf{b} such that

$$\mathbf{a}^{\top}\mathbf{x} \leq \mathbf{b} \text{ for any } \mathbf{x} \in C, \text{ and } \mathbf{a}^{\top}\mathbf{x} \geq \mathbf{b} \text{ for any } \mathbf{x} \in D.$$
 (2)

Proof 1 See Figure 3.

Theorem 2 (Supporting Hyperplan Theory) Suppose that C is a convex set and \mathbf{x}_0 is a point on the boundary of C. Then there exists a vector \mathbf{a} such that

$$\mathbf{a}^{\top}\mathbf{x} \le \mathbf{a}^{\top}\mathbf{x}_0 \text{ for any } \mathbf{x} \in C, \tag{3}$$

where $\{\mathbf{x} \mid \mathbf{a}^{\top}\mathbf{x} = \mathbf{a}^{\top}\mathbf{x}_0\}$ is called a supporting hyperplan of C at \mathbf{x}_0 .

Operations preserve the convexity:

- If $C_i, i = 1, ..., \infty$ are convex sets, then $\cap_i C_i$ is convex. This results can be extended as $\cap_{i \in \mathcal{I}} C_i$ is convex if the indicator set \mathcal{I} is convex.
- If C is convex, the $f(C) = \{\mathbf{y} | \mathbf{y} = f(\mathbf{x}) = A\mathbf{x} + b, \mathbf{x} \in C\}$ is convex.

1.0.1 Convex Function

Definition 4 We say a function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if dom(f) is convex and for any $\mathbf{x}, \mathbf{y} \in dom(f)$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}).$$
(4)

Example 2 Let us give some examples of convex function:

- $f(\mathbf{x}) = \mathbf{a}^\top \mathbf{x} \text{ or } f(\mathbf{x}) = A\mathbf{x}$. Is $f(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ convex?
- $f(\mathbf{x}) = \|\mathbf{x}\|.$
- $f(x) = \exp(ax)$ for $a, x \in \mathbb{R}$.
- $f(x) = x \log(x), x > 0.$
- $f(A) = -\log(\det(A))$ for any $A \in \mathcal{S}_{++}^n$.

At here, we briefly introduce a very important theorem about the smooth convex function. It helps us to understand what is convex function in different expressions.

Theorem 3 Suppose $f \in C_L^{1,1}$. Then the following are equivalent:

- 1. f is convex.
- 2. $f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle$
- 3. $\langle \nabla f(\mathbf{y}) \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle \ge 0$ (monotonicity)
- 4. Additionally, if $f \in C_L^{2,1}$, then $\nabla^2 f \succeq 0$ everywhere ($\nabla^2 f$ is positive semi-definite).

Proof 2 • (1) \Rightarrow (2): Write $f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))$ two ways:

$$f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) = f(\mathbf{x}) + t \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + o(t)$$

$$f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) = f(t\mathbf{y} + (1 - t)\mathbf{x}) \le tf(\mathbf{y}) + (1 - t)f(\mathbf{x})$$

Therefore:

$$\begin{aligned} t \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + o(t) &\leq t(f(\mathbf{y}) - f(\mathbf{x})) \\ \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{o(t)}{t} \leq f(\mathbf{y}) - f(\mathbf{x}) \end{aligned}$$

Taking the limit as $t \to 0$,

$$\langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \le f(\mathbf{y}) - f(\mathbf{x}).$$

• $(2) \Rightarrow (3)$:

If we exchange the roles in the inequality in (2), we could get, for any $\mathbf{x}, \mathbf{y} \in dom(f)$

$$\begin{aligned} f(\mathbf{y}) &\geq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \\ f(\mathbf{x}) &\geq f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \end{aligned}$$

And if we sum those two inequalities we could obtain (3).

• (3) \Rightarrow (2): Define $\mathbf{x}_t = \mathbf{x} + t(\mathbf{y} - \mathbf{x})$ and $\phi(t) = f(\mathbf{x}_t)$. Observe that

$$\phi'(s) = \langle \nabla f(\mathbf{x}_s), \mathbf{y} - \mathbf{x} \rangle, \quad \phi(0) = f(\mathbf{x}), \quad \phi(1) = f(\mathbf{y}).$$

Suppose t > s. Then

$$\phi'(t) - \phi'(s) = \langle \nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}_s), \mathbf{y} - \mathbf{x} \rangle$$
$$= \frac{1}{t-s} \langle \nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}_s), \mathbf{x}_t - \mathbf{x}_s \rangle \ge 0,$$

so ϕ' is nondecreasing.

$$f(y) = \phi(0) + \int_0^1 \phi'(\tau) d\tau \ge \phi(0) + \phi'(0)$$

$$\Rightarrow \quad f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$$

• $(2) \Rightarrow (1)$:

Let's define $l_{\mathbf{x}}(\mathbf{y}) := f(\mathbf{x}) + t \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$, and from (2) we know that, for any $\mathbf{y} \in dom(f)$,

$$f(\mathbf{y}) = \max_{\mathbf{x} \in dom(f)} l_{\mathbf{x}}(\mathbf{y})$$

Notice that the reason why we could put = there is because, $f(\mathbf{y}) = l_{\mathbf{y}}(\mathbf{y})$. And for each \mathbf{x} we know that $l_{\mathbf{x}}(\mathbf{y})$ is a affine function and the point-wise maximum of arbitrary convex function is still convex. Then we know that f is convex.

And for smooth convex function we have a really nice to judge if a point is optimal.

Theorem 4 (Optimality Conditions) The following are equivalent for a convex C^1 function:

- 1. \mathbf{x}^* is a global minimum.
- 2. \mathbf{x}^* is a local minimum.
- 3. \mathbf{x}^* is a stationary points ($\nabla f(\mathbf{x}^*) = 0$).

Proof 3 • $(1) \Rightarrow (2)$

This direction is trivial. If x^* is global minimum then it definitely is a local minimum.

• $(2) \Rightarrow (3)$

Assume that \mathbf{x}^* is the local minimum, then there exists a ball $B(\mathbf{x}^*, \epsilon) = \{bx \mid ||\mathbf{x} - \mathbf{x}^*|| \le \epsilon\}$ such that $f(\mathbf{x}) \ge f(\mathbf{x}^*)$ for any $\mathbf{x} \in B(\mathbf{x}^*, \epsilon)$. Based on Taylor expansion, it has

$$f(\mathbf{x}) = f(\mathbf{x}^*) + \langle \nabla f(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle + o(\|\mathbf{x} - \mathbf{x}^*\|)$$

Let $\mathbf{x} - \mathbf{x}^* = -s \nabla f(\mathbf{x}^*)$, and the s makes $\mathbf{x} \in B(\mathbf{x}^*, \epsilon)$. Thus, $f(\mathbf{x}) = f(\mathbf{x}^*) - s \|\nabla f(\mathbf{x}^*)\|^2 + o(s)$. So,

$$0 \le \frac{f(\mathbf{x}) - f(\mathbf{x}^*)}{s} = -s \|\nabla f(\mathbf{x}^*)\|^2 + o(s) \le 0.$$
(5)

We obtain that $\nabla f(\mathbf{x}^*) = 0$.

• (3) \Rightarrow (1) Assume x^* is a critical point, $\nabla f(x^*) = 0$, and from convexity we have

$$f(x) \ge f(x^*) + \langle \nabla f(x^*), x - x^* \rangle = f(x^*)$$

for every x, then x^* is a global minimizer.

Theorem 5 $f(\mathbf{x})$ is a convex function if and only if for any $\mathbf{x} \in (f), \mathbf{d} \in \mathbb{R}^n$, function $\phi : \mathbb{R} \to \mathbb{R}$,

$$\phi(t) := f(\mathbf{x} + t\mathbf{d}), (\phi) = \{t | \mathbf{x} + t\mathbf{d} \in dom(f)\},\$$

 $is \ convex.$

Proof 4 See Theorem 2.8 on Page 48.

Definition 5 Denote that the epigraph of a function f as the set $epi(f) = \{(\mathbf{x}, t) | f(\mathbf{x}) \le t\}$.

Theorem 6 function f is convex if and only if epi(f) is a convex set.

Proposition 1 • If f_1, f_2, \ldots, f_m are convex, then $g(\mathbf{x}) = \max(f_1(\mathbf{x}), \ldots, f_m(\mathbf{x}))$ is convex.

• $f(\mathbf{x}, \mathbf{y})$ is convex with respect to \mathbf{x} , then $g(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{Y}} f(\mathbf{x}, \mathbf{y})$ is convex.

References